Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Elife ; 122023 04 26.
Article in English | MEDLINE | ID: covidwho-2313805

ABSTRACT

Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Pandemics , Europe/epidemiology , France/epidemiology
2.
Int J Infect Dis ; 133: 89-96, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2313093

ABSTRACT

OBJECTIVES: We aimed to quantify how the vaccine efficacy of BNT162b2, messenger RNA-1273, AD26.COV2-S, and ChAdOx1 nCoV-19 against detected infection by the SARS-CoV-2 Delta and Omicron variants varied by time since the last dose, vaccine scheme, age, and geographic areas. METHODS: We analyzed 3,261,749 community polymerase chain reaction tests conducted by private laboratories in France from December 2021 to March 2022 with a test-negative design comparing vaccinated to unvaccinated individuals. RESULTS: Efficacy against detected infection by Delta was 89% (95% confidence interval, 86-91%) at 2 weeks, down to 59% (56-61%) at 26 weeks and more after the second dose. Efficacy against Omicron was 48% (45-51%) at 2 weeks, down to 4% (2-5%) at 16 weeks after the second dose. A third dose temporarily restored efficacy. Efficacy against Omicron was lower in children and the elderly. Geographical variability in efficacy may reflect variability in the ratio of the number of contacts of vaccinated vs unvaccinated individuals. This ratio ranged from 0 to +50% across departments and correlated with the number of restaurants and bars per inhabitant (beta = 15.0 [0.75-29], P-value = 0.04), places that only vaccinated individuals could access in the study period. CONCLUSION: SARS-CoV-2 vaccines conferred low and transient protection against Omicron infection.


Subject(s)
COVID-19 , Vaccine Efficacy , Child , Aged , Humans , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , SARS-CoV-2/genetics , France/epidemiology
3.
J Math Biol ; 85(4): 43, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2048224

ABSTRACT

We present a unifying, tractable approach for studying the spread of viruses causing complex diseases requiring to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual's infection age, i.e., the time elapsed since infection, has three benefits. First, regardless of the number of types, the age distribution of the population can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. The frequency of type i is simply obtained by integrating the probability of being in state i at a given age against the age distribution. This representation induces a simple methodology based on the additional assumption of Poisson sampling to infer and forecast the epidemic. We illustrate this technique using French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, where the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Forecasting , Humans , Models, Biological , Probability
4.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: covidwho-1856226

ABSTRACT

Evaluating the characteristics of emerging SARS-CoV-2 variants of concern is essential to inform pandemic risk assessment. A variant may grow faster if it produces a larger number of secondary infections ("R advantage") or if the timing of secondary infections (generation time) is better. So far, assessments have largely focused on deriving the R advantage assuming the generation time was unchanged. Yet, knowledge of both is needed to anticipate the impact. Here, we develop an analytical framework to investigate the contribution of both the R advantage and generation time to the growth advantage of a variant. It is known that selection on a variant with larger R increases with levels of transmission in the community. We additionally show that variants conferring earlier transmission are more strongly favored when the historical strains have fast epidemic growth, while variants conferring later transmission are more strongly favored when historical strains have slow or negative growth. We develop these conceptual insights into a new statistical framework to infer both the R advantage and generation time of a variant. On simulated data, our framework correctly estimates both parameters when it covers time periods characterized by different epidemiological contexts. Applied to data for the Alpha and Delta variants in England and in Europe, we find that Alpha confers a+54% [95% CI, 45-63%] R advantage compared to previous strains, and Delta +140% [98-182%] compared to Alpha, and mean generation times are similar to historical strains for both variants. This work helps interpret variant frequency dynamics and will strengthen risk assessment for future variants of concern.


Mutations in genes of the SARS-CoV-2 virus have generated new variants of concern, like Alpha, Delta, and more recently Omicron. These strains contain genetic modifications that help the virus spread more easily as well as altering the severity of the illness it causes. This has led to rising numbers of infections, known as epidemic waves, in many parts of the world. Tracking new variants of concern is crucial to protecting the public. To do this, scientists monitor how many people one person with the virus can infect, also known as the number of secondary infections. They may also measure when in the course of the illness an individual may pass along the virus to others. Together, these metrics help determine how fast and large an outbreak caused by a new variant will grow. The more people the new variant infects and the quicker it spreads, the more likely it is to replace existing strains of the virus. So far, most studies have assumed that the growth rate of a new variant solely depends on the number of secondary infections, and the timing of secondary infections is often not considered. To address this, Blanquart et al. built a mathematical model that combines both these parameters to determine the growth rate of new viral strains. The model showed that variants which rapidly cause secondary infections have a larger growth advantage over existing strains when the virus is more easily transmitted between individuals and the epidemic spreads rapidly. But when there is less transmission and the epidemic is declining, variants that generate secondary infections after a longer time have an advantage. For example, when control measures like mask wearing or social distancing are in place, delayed secondary infections may be more advantageous. Blanquart et al. then applied their model to data from the Alpha and Delta variant outbreaks in the United Kingdom. They found that Alpha and Delta did not change the timing of secondary infections compared to previously circulating strains. But the Alpha variant had a 54% transmission advantage over previous strains and the Delta variant had a 140% transmission advantage over Alpha. Taken together, these findings suggest that the timing of secondary infections and transmission rates both play an important role in how quickly a virus spreads. The new mathematical model created by Blanquart et al. may help epidemiologists better predict the trajectory of new SARS-CoV-2 variants and determine how to best control their spread.


Subject(s)
COVID-19 , Coinfection , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics
5.
Sci Rep ; 12(1): 1094, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1634513

ABSTRACT

France went through three deadly epidemic waves due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing major public health and socioeconomic issues. We proposed to study the course of the pandemic along 2020 from the outlook of two major Parisian hospitals earliest involved in the fight against COVID-19. Genome sequencing and phylogenetic analysis were performed on samples from patients and health care workers (HCWs) from Bichat (BCB) and Pitié-Salpêtrière (PSL) hospitals. A tree-based phylogenetic clustering method and epidemiological data were used to investigate suspected nosocomial transmission clusters. Clades 20A, 20B and 20C were prevalent during the spring wave and, following summer, clades 20A.EU2 and 20E.EU1 emerged and took over. Phylogenetic clustering identified 57 potential transmission clusters. Epidemiological connections between participants were found for 17 of these, with a higher proportion of HCWs. The joint presence of HCWs and patients suggest viral contaminations between these two groups. We provide an enhanced overview of SARS-CoV-2 phylogenetic changes over 2020 in the Paris area, one of the regions with highest incidence in France. Despite the low genetic diversity displayed by the SARS-CoV-2, we showed that phylogenetic analysis, along with comprehensive epidemiological data, helps to identify and investigate healthcare associated clusters.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , Middle Aged , Paris/epidemiology , Retrospective Studies
6.
J R Soc Interface ; 18(184): 20210575, 2021 11.
Article in English | MEDLINE | ID: covidwho-1522457

ABSTRACT

Emerging epidemics and local infection clusters are initially prone to stochastic effects that can substantially impact the early epidemic trajectory. While numerous studies are devoted to the deterministic regime of an established epidemic, mathematical descriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review existing mathematical results on the size of the epidemic over time, and derive new results to elucidate the early dynamics of an infection cluster started by a single infected individual. We show that the initial growth of epidemics that eventually take off is accelerated by stochasticity. As an application, we compute the distribution of the first detection time of an infected individual in an infection cluster depending on testing effort, and estimate that the SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the UK early August 2020. We also compute a minimal testing frequency to detect clusters before they exceed a given threshold size. These results improve our theoretical understanding of early epidemics and will be useful for the study and control of local infectious disease clusters.


Subject(s)
COVID-19 , Epidemics , Humans , Probability , SARS-CoV-2 , Stochastic Processes
7.
Elife ; 102021 09 27.
Article in English | MEDLINE | ID: covidwho-1441362

ABSTRACT

The relationship between SARS-CoV-2 viral load and infectiousness is poorly known. Using data from a cohort of cases and high-risk contacts, we reconstructed viral load at the time of contact and inferred the probability of infection. The effect of viral load was larger in household contacts than in non-household contacts, with a transmission probability as large as 48% when the viral load was greater than 1010 copies per mL. The transmission probability peaked at symptom onset, with a mean probability of transmission of 29%, with large individual variations. The model also projects the effects of variants on disease transmission. Based on the current knowledge that viral load is increased by two- to eightfold with variants of concern and assuming no changes in the pattern of contacts across variants, the model predicts that larger viral load levels could lead to a relative increase in the probability of transmission of 24% to 58% in household contacts, and of 15% to 39% in non-household contacts.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/transmission , SARS-CoV-2/pathogenicity , Viral Load , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Contact Tracing/statistics & numerical data , Female , Humans , Logistic Models , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Virus Replication/immunology , Young Adult
8.
Euro Surveill ; 26(37)2021 09.
Article in English | MEDLINE | ID: covidwho-1417056

ABSTRACT

We compared PCR results from SARS-CoV-2-positive patients tested in the community in France from 14 June to 30 July 2021. In asymptomatic individuals, Cq values were significantly higher in fully vaccinated than non-fully vaccinated individuals (effect size: 1.7; 95% CI: 1-2.3; p < 10-6). In symptomatic individuals and controlling for time since symptoms, the difference vanished (p = 0.26). Infections with the Delta variant had lower Cq values at symptom onset than with Alpha (effect size: -3.32; 95% CI: -4.38 to -2.25; p < 10-6).


Subject(s)
COVID-19 , Vaccines , France , Humans , SARS-CoV-2 , Viral Load
10.
Epidemics ; 35: 100445, 2021 06.
Article in English | MEDLINE | ID: covidwho-1163746

ABSTRACT

To better control the SARS-CoV-2 pandemic, it is essential to quantify the impact of control measures and the fraction of infected individuals that are detected. To this end we developed a deterministic transmission model based on the renewal equation and fitted the model to daily case and death data in the first few months of 2020 in 79 countries and states, representing 4.2 billions individuals. Based on a region-specific infection fatality ratio, we inferred the time-varying probability of case detection and the time-varying decline in transmissiblity. As a validation, the predicted total number of infected was close to that found in serosurveys; more importantly, the inferred probability of detection strongly correlated with the number of daily tests per inhabitant, with 50 % detection achieved with 0.003 daily tests per inhabitants. Most of the decline in transmission was explained by the reductions in transmissibility (social distancing), which avoided 10 millions deaths in the regions studied over the first four months of 2020. In contrast, symptom-based testing and isolation of positive cases was not an efficient way to control the spread of the disease, as a large part of transmission happens before symptoms and only a small fraction of infected individuals was typically detected. The latter is explained by the limited number of tests available, and the fact that increasing test capacity often increases the probability of detection less than proportionally. Together these results suggest that little control can be achieved by symptom-based testing and isolation alone.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Pandemics/prevention & control , COVID-19/diagnosis , COVID-19/epidemiology , Communicable Disease Control , Female , Humans , Male , Models, Theoretical , SARS-CoV-2/isolation & purification
11.
Euro Surveill ; 26(9)2021 03.
Article in English | MEDLINE | ID: covidwho-1154191

ABSTRACT

The emergence of SARS-CoV-2 variant 20I/501Y.V1 (VOC-202012/1 or GR/501Y.V1) is concerning given its increased transmissibility. We reanalysed 11,916 PCR-positive tests (41% of all positive tests) performed on 7-8 January 2021 in France. The prevalence of 20I/501Y.V1 was 3.3% among positive tests nationwide and 6.9% in the Paris region. Analysing the recent rise in the prevalence of 20I/501Y.V1, we estimate that, in the French context, 20I/501Y.V1 is 52-69% more transmissible than the previously circulating lineages, depending on modelling assumptions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , France/epidemiology , Humans , Paris
12.
PLoS Comput Biol ; 17(3): e1008752, 2021 03.
Article in English | MEDLINE | ID: covidwho-1110080

ABSTRACT

Repurposed drugs that are safe and immediately available constitute a first line of defense against new viral infections. Despite limited antiviral activity against SARS-CoV-2, several drugs are being tested as medication or as prophylaxis to prevent infection. Using a stochastic model of early phase infection, we evaluate the success of prophylactic treatment with different drug types to prevent viral infection. We find that there exists a critical efficacy that a treatment must reach in order to block viral establishment. Treatment by a combination of drugs reduces the critical efficacy, most effectively by the combination of a drug blocking viral entry into cells and a drug increasing viral clearance. Below the critical efficacy, the risk of infection can nonetheless be reduced. Drugs blocking viral entry into cells or enhancing viral clearance reduce the risk of infection more than drugs that reduce viral production in infected cells. The larger the initial inoculum of infectious virus, the less likely is prevention of an infection. In our model, we find that as long as the viral inoculum is smaller than 10 infectious virus particles, viral infection can be prevented almost certainly with drugs of 90% efficacy (or more). Even when a viral infection cannot be prevented, antivirals delay the time to detectable viral loads. The largest delay of viral infection is achieved by drugs reducing viral production in infected cells. A delay of virus infection flattens the within-host viral dynamic curve, possibly reducing transmission and symptom severity. Thus, antiviral prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate infection in people at high risk.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2 , Antiviral Agents/administration & dosage , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Computational Biology , Drug Repositioning , Drug Therapy, Combination , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Models, Biological , Pandemics/prevention & control , Primary Prevention/methods , Risk Factors , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Stochastic Processes , Time Factors , Treatment Outcome , Viral Load/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL